DESIGN TIP: 6 Undercut Techniques to Improve Moldability

Undercuts are those complex features in an injection-molded part that prevent its ejection from the mold. They can be found on thousands of everyday parts, from the threads on a fastener to the slot for the power switch on a smart phone case.

The left image (1), illustrates a clip with undercut feature. The right image (2), shows an access hole beneath the undercut that allows the mold to protrude through the part and provide the needed latch shutoff geometry.

In our latest tip, we cover different injection molding design techniques to successfully integrate undercuts, and ultimately, improve overall part moldability.

This month’s tip discusses:

  • Parting lines
  • Side-actions
  • Bumpoffs
  • Hand-loaded inserts
  • Telescoping shutoffs
  • Additional considerations

READ FULL DESIGN TIP

On-Demand Injection Molding Helps Med Device Firm Bring Vision to Blind

Helping blind people gain a sense of vision—and doing so through their tongues—sounds like pure science fiction.

Wicab Inc.’s BrainPort V100 is a wearable device for the blind that enables users to process visual images with their tongues.

It’s now a reality, however, thanks to the BrainPort V100, a wearable medical device developed with help from Proto Labs’ injection molding production process. The device enables users to process visual images with their tongues, and users say the effect is like having “streaming images drawn on their tongue with small bubbles,” according to Wicab Inc., the BrainPort’s Wisconsin-based maker.

That comes from the vibrations or tingling that users feel on the surface of their tongue as information about their environment—captured by a small video camera on the BrainPort headset—gets converted into patterns of electronic stimulation through a small, electrode-embedded mouthpiece.

The BrainPort V100, already for sale in Europe and Canada, achieved a breakthrough recently when the U.S. Food and Drug Administration (FDA) approved it as an assistive device for the blind and visually impaired to use in conjunction with other aids such as a white cane or guide dog.

Wicab turned to Proto Labs for on-demand injection molding production components to develop and launch this technology, including the existing BrainPort V100, and a new model now in development, the next generation BrainPort Vision Pro.

READ CASE STUDY

Webinar: How to Design Efficient Parts for Rapid CNC Machining

Join us for a live webinar on rapid CNC machining. The presentation, hosted by our technical specialist Tony Holtz, will share how to design quality, machined parts.

During the webinar, you will learn how to:

  • Reduce manufacturing costs by simplifying part design
  • Select materials to improve part functionality
  • Design with moldability in mind to better prepare for injection molding

In addition to general design considerations, we’ll discuss how to leverage rapid manufacturing processes for accelerated product development.

TITLE: Designing for CNC Machining
PRESENTER: Tony Holtz, Technical Specialist at Proto Labs
DATE: Thursday, December 1 at 1 p.m. CST
RSVP: Click here to sign up

If you can’t attend the live event, you can still register to receive an on-demand recording afterward. And, if you have any colleagues that may interested, please feel free to forward this invite.

Proto Labs Receives Tekne Award for Advanced Manufacturing

Vicki Holt, Proto Labs CEO, accepts the Tekne Award for Advanced Manufacturing.

Each year, the Minnesota High Tech Association (MHTA) brings together the Minnesota technology community for the Tekne Awards. The awards highlight advancements in science and technology in Minnesota—ranging from innovations in cyber security to agriculture.

Last night, we were honored to take home a Tekne Award for the Advanced Manufacturing category. The nomination was based on our technology-enabled manufacturing that accelerates product development and provides a low-volume, on-demand solution for production parts.

Other notable winners include:

We are proud to have been nominated alongside other innovative manufacturing companies like Ecolab and Uponor. And, we are truly grateful to be a part of the thriving tech community in the Twin Cities. Here’s to another year of innovation!

DESIGN TIP: 6 Ways to Cut Costs with 3D Printing

Reduced cost of development as well as part production can certainly be achieved with industrial 3D printing processes, like selective laser sintering and direct metal laser sintering, but there are a few design rules you need to keep in mind.

Here is DMLS in action, as the machine sinters each layer. This process is repeated layer by layer until the build is complete.

This month’s design tip from Proto Labs discusses:

  • Optimizing part design for 3D printing
  • Embracing non-traditional design techniques like organic features
  • Designing for manufacturability if larger quantities are needed
  • Minimizing overhangs and other unfriendly features
  • Avoiding “over-tolerancing” your parts
  • Factoring in your product’s overall functionality in addition to cost reductions

READ FULL DESIGN TIP.