About Tony Holtz

Tony is a technical specialist at Proto Labs with more than 10 years of experience ranging from CNC mill operator to mold designer to customer service engineer. While his formal education is in industrial machinery operations, he has extensive knowledge and experience in both traditional and advanced manufacturing processes and materials. Throughout his tenure at Proto Labs, Tony has worked with countless designers, engineers and product developers to improve the manufacturability of their parts.

TIPS WITH TONY: Rapid Injection Molding vs. Conventional Molding

How do you know if you should use low-volume injection molding or traditional methods? What benefit does soft aluminum tooling provide? These are just a few questions we hear regularly, so we wanted to shed some light on these important molding considerations.

Prototyping
Before Proto Labs began in 1999, prototyping with injection molding was costly and took months to receive the very first sample parts. We took a low-volume approach to injection molding where it was possible to get a handful of parts in a few days rather than the large-scale approach that nearly all other manufacturers used that involved part minimum in the tens of thousands and full-scale production in the millions of parts.

Proto Labs specializes in aluminum molds that use high-speed CNC machines to create a standard single cavity mold in as fast as one business day with the ability to produce up to 10,000 parts or more. Complex parts are also possible by using pin-actuated slides as well as hand-loaded mold inserts. We try to take the difficulty out of injection molding design by simplifying it.

Conventional molding uses a much more complex molds that take weeks to design, where Proto Labs is highly automated. Complex multi-plate mold designs using lifters, collapsible cores and multi-cavities are able to produce much more complex parts at high volumes, and typically, mold creation for these molds take anywhere from four to 12 weeks.

Bridge Tooling
We discovered that there was a much greater need for low-volume manufacturing. Customers were placing additional orders for a few thousand parts that were being used to set-up production lines and even limited short-run production while the conventional tooling was being built.

Conventional tooling is your production mold. It’s difficult to have a bridge tool produced without having your production molder hold off on manufacturing while they create a bridge tool. Using both methods allows you to have two manufacturers producing molds side-by-side to ultimately have parts produced faster.

Continue reading

TIPS WITH TONY: Watch Out for Warp, Sink and Voids!

In my years of working closely with product designers, I’ve seen some really great designs, but on occasion, I’ve encountered part designs by both novice and experienced designers and engineers that have needed some work to improve moldability and reduce cosmetic defects. Let’s look at some common design mistakes that could result in parts with sink, warp and voids.

Wall Thickness
Why is uniform wall thickness important? Thermoplastics simply don’t like transitioning from thin to thick sections due to the ununiformed cooling. All thermoplastics shrink as they cool but when thin areas cool before thick areas, stress is created. The results may vary depending on material selection and part design, but if you’re not following the proper material guidelines for wall thickness and mold design, you may end up with unsightly voids, sink and possibly even warp within your parts.

How can you reduce the risk of these molding concerns? Provide proper wall thickness through appropriate coring, rib and boss design, which in turn, helps you avoid excessive thick or thin wall sections.

Continue reading

Finding the Right Surface Finish

Molded parts are everywhere — from highly cosmetic housings hiding in plain sight to internal components where a fine polish is unnecessary. Most people pay no attention to the surface finish on those parts, but for product designers and engineers, it’s an important design consideration.

Identifying the right surface finish is dependent on a few important elements, namely the development or production stage that your parts are in, the materials they’re being manufactured in and their end-use applications.

On custom finishes, use color coding to provide a clearly marked image of your CAD model with its required finishes.

This month’s tip discusses:

  • available surface finishes for injection molded parts at Proto Labs
  • how to create a custom surface finish involving two or more finishes
  • navigating finishes within ProtoQuote
  • why gating and ejection play a limited role in liquid silicone rubber parts
  • secondary options applied to magnesium components

Read the full design tip here.

TIPS WITH TONY: Using Additive Fillers to Improve Durability

There are hundreds of thermoplastic materials available for injection molding, and various grades provide strength, durability, impact resistance and many other beneficial attributes. By adding compounded fillers to the equation, you can further increase the durability of your parts.

A component molded with glass-filled nylon to improve durability.

Glass-Fiber Filler
Glass is the most commonly used additive in plastics. Glass-filled materials provide a higher level of strength and rigidity to a part versus an unfilled base material. You can adjust the level of glass in a material depending on your needs, but be cautious as glass can affect how a part turns out dimensionally and cosmetically. We typically see 13 percent and 33 percent glass-filled materials, but occasionally it pushes upwards to 45 percent.

Other Additives and Fillers
There more additives than just glass fiber, and many of these are easily compounded by material manufacturers for your specific needs (or they may already have a pre-compounded material that meets your needs). Glass bead, mineral, metal, carbon, glass mica, talk and Teflon are just a few that Proto Labs has worked with in the past. These fillers can improve:

Strength Conductivity
Chemical resistance Impact resistance
Hardness Flame retardancy
UV stability Heat resistance
Stiffness Lubricity

Continue reading

TIPS WITH TONY: Shedding Light on Clear Materials

Designing luminaires or lenses with clear materials? Our tip this week looks at the material selection and surface finishes available for prototyping and low-volume production of lighting applications.

Prototype built in clear WaterShed XC 11122 material with stereolithography.

Additive Manufacturing
If you haven’t considered using additive manufacturing (3D printing) for your lens design, you may want to check it out. Proto Labs offers stereolithography (SL) with three options for clear parts.

  • Somos WaterShed XC 11122 — ideal for lens and high-humidity applications
  • 3D Systems Accura 60 (10 percent glass-filled) — creates a clear part with slight blue tint and high stiffness
  • 3D Systems Accura 5530 — high temperature resistance, suitable for under-the-hood applications