INDUSTRY SPOTLIGHT: 3D Printing for Production Parts Gains Credibility

Why are some engineers so hesitant to use 3D printing for more than just development?

Engineers are hardwired and trained to make calculated decisions based on facts. Traditional manufacturing processes such as casting and molding have been around a very, very long time—since the Bronze Age—and time has perfected these processes and brought them to what they are today. Both industry experts and novices alike can benefit from hundreds of years of this process evolution. 3D printing processes are relatively new, especially when compared to casting or injection molding.

Motor mounts are among a growing list of automotive parts that are now manufactured using commercial-grade 3D printing.

Modern, commercial-grade printing equipment and processes are capable of predictable results that will ease the mind of the most skeptical engineer. DMLS (direct metal laser sintering) can produce repeatable results for parts that can be manufactured in no other known method. Proto Labs’ 3DP facility is not only ISO 9001:2008, but also AS 9100. This is the supplemental requirement established by the aerospace industry to satisfy DOD, NASA, and FAA quality requirements. This certification should give any engineer a sense of security.

Understanding some basic quality parameters around the processes can help to lay a foundation of credibility. For example, limits are set to the number of times base material can be used, or only virgin powder could be specified. This is no different than controlling the amount of allowable regrind into a plastic injection-molded part.

Rolls-Royce is a notable automaker now using commercial-grade 3D printing for some production parts.

Testing parts to confirm material properties are extremely common in DMLS. Building a standard tensile bar with each build is a great way to confirm batches of production are producing the desired results. This way the first batch can have destructive testing on the tensile bar and parts to confirm the material and process are producing parts with the specified properties. The future batches can test the tensile bar for confirmation the predictable results were achieved.

The aerospace industry has been embracing advanced manufacturing methods for some time now and the automotive industry has also been making great strides in this area. For example, recent articles have been published around the Rolls-Royce Phantom’s printed parts and BMW’s leading spot in adopting printing technologies.

INDUSTRY SPOTLIGHT: Commercial 3D Printing for Production Parts

Technology in the 3D printing space is advancing at the speed of light—everything from support structure software to material options and properties to ever improving processes. Some simply take these advancements as small steps in the overall progress of 3D printing, but these improvements are significant attributes that add value across industries and applications. 

Nylon handheld device 3D printed with SLS.

Medical and Health Care Development
Industries are adopting this technology for varying applications at very different paces. The health care industry has embraced nearly all forms of printing, but has particularly grasped onto direct metal laser sintering (DMLS). As we discussed last month, DMLS has a solid advantage over other 3D printing processes since it produces functional, production-quality parts from metal powder.  When plastics are concerned, selective laser sintering (SLS) is another additive manufacturing process with production in mind.

Product developers, designers and engineers in the medical and health care industries use many different types of 3D printing technologies, but why?

  • concept modeling and prototyping during early phases of product and device development
  • iterating design often to get parts in hand fast
  • reducing financial and design risks
  • building high-quality assemblies for end users to evaluate and influence human factor designs

3D-Printed Parts Help Shape Future of Health Care

Direct metal laser sintering (DMLS) is an industrial 3D printing process that creates intricate, high-quality, fully dense metal parts. Materials that are regularly seen in medical and health care devices — like stainless steel 17-4PH and 316L as well as titanium Ti 6-4 — are available through DMLS.

Small medical components built with DMLS.

This additive manufacturing process has a unique advantage over many other 3D printing processes since it produces functional, end-use metal parts. And it has advantages over traditional machining processes since surgical device development often involves very small, highly detailed components that may be impossible to manufacture by traditional means.

This includes, but not limited to, combining multiple extremely small and detailed parts into one part, which reduces the excess bulk required for assembly. A single complex part will often produce better results than an assembly of simpler components that need to work together.

Imagine the end of an arm gripper for a robotic device that stiches up a patient. These components may be smaller than 0.250 inches but are still required to possess the strength and precision required to tie knots for sutures.

Material selection and manufacturability aside, the health care industry continually strives to improve the patient experience. Keeping each procedure as minimally invasive as possible is a key element with this approach. Using DMLS technology lets surgeons minimize incisions, which, in turn, accelerates patient recovery. This not only improves the patient experience, it reduces the cost to hospitals and insurance companies.

And one of the most important attributes of DMLS? Metal parts can be prototyped within days so you can develop devices much faster and get to submissions, trials and production much quicker.

DMLS is enabling the next generation of medical devices. Don’t miss out.


Auto-mation: Can Market Adoption of Autonomous Cars Match the hype?

The automotive industry, including the disruptive tech giants, are investing tremendous amounts of funding and human capital into the development of autonomous vehicles and related technologies. Evidence of this is General Motors’ $500 million investment in Lyft and $1 billion into the upcoming acquisition of Cruise Automation Inc. It’s difficult to read about the automotive industry without encountering discussions around autonomous driving. The auto industry is hiring software developers at a pace once that was once limited to mechanical and industrial engineers.

A rendering of possible autonomous driving interaction. Source: General Motors

Market Adoption … Eventually
So, why is the auto industry going down this path when a majority of the American consumers flat out do not want a driverless car or trust the concept yet? A recent J.D. Power survey found that just over half of Gen Z and Gen Y are interested — that’s surprisingly low, since these groups are more comfortable with public transportation and delay owning a car more than previous generations. And only about 41% of Gen Xers support self-driving technology, a rate that shrinks further for the baby boomers at 23%. It’s important to note here that the peak age for purchasing a new car is 43 years old.

The answer lies in the fact that the “R” in automotive R&D historically occurs 10 to 20 years before actually moving to production lines. This extended timeline frequently means the industry is working on things the consumer has not yet even taken into account. But as discussed in an earlier post, recent tech giant disruptions are shortening this product development cycle.

Continue reading

Supplier Collaboration and On-Demand Manufacturing

Supply chain consolidation, value added manufacturing, vendor collaboration … terms we are all familiar with, but in today’s always on, always connected environment, manufacturers need something more. 

Just-in-time manufacturing (JIT) has been around for decades and was truly first implemented on a grand scale at Toyota. There is this mythology that was referred to as the Toyota Production System. The primary goal was to streamline operations including supplier activities and reduce inventories. In the 1990s, this concept transformed into lean manufacturing, literally meaning to remove waste. The most recent evolution of this fundamental thought process is on-demand manufacturing.

On-demand manufacturing simply brings the best of all of its predecessors together and is designed to supply components as needed with little notice, on time, every time. Think of it this way, you can procure custom parts nearly as easily as off-the-shelf fasteners, for example.

To do this, one must understand the supplier’s capabilities, limitations and areas of expertise, and how this complements the rest of their supply chain. Design for manufacturing is crucial. Not only does this give a customer valuable information about their parts or assemblies, but is emphasizes where the supplier will be able to add value on the project today and in the future.

Take note of the product life cycle image. It is all too common to have a sole supplier when a product moves to high-volume production — this can create unnecessary risks.

Click to enlarge:

We all know that developing dual sourcing can drive costs well above the comfort zone, but is often a necessary risk. Additional value is created when a supplier that helps develop prototype parts can also support future parts needs throughout the life of a product. When your prototyping suppliers can support low-volume orders reliably, the need for a traditional secondary production source is eliminated if production doesn’t exceed tens of thousands of parts. This also creates a nimble supply chain for fast turnaround without carrying costly inventory for bridge tooling, maturity demand spikes, and end-of-life or warranty support.

Read more about using rapid manufacturing for supply chain management in the white paper: Reducing Risk Through On-Demand Manufacturing