Medical Device Prototyping With A Manufacturing Hand From Proto Labs

Modern science has allowed surgeons to fix the human body amazingly fast, yet leave behind only small traces that repairs were performed. One of the more commonly used methods to achieve this is by a minimally invasive technique called laparoscopic surgery, where small incisions are made into a patient’s skin, a laparoscope is inserted to provide a magnified view of the patient’s organs, the procedure is performed, and the incision is closed by stitching or surgical staples. You can have your gallbladder removed before breakfast and be binge-watching Netflix from the comfort of your couch by dinner.

Typically, the small openings created during laparoscopic surgery are closed in one of two ways: manually stitching subcutaneously (beneath the skin) with a bio-absorbable, thread-like material and a curved needle that moves from one side of the hole to the other to close it tight, or with a surgical stapler that inserts metal staples into the skin to close the wound. The first technique is more time consuming, but leaves less surgical evidence. The latter method is faster, but can cause scarring and infection. Chuck Rogers, Ph.D., and Kenneth Danielson, M.D. of Massachusetts-based Opus KSD are nearing the launch of a device that combines the best of both worlds: the ease of a stapler with proprietary bio-absorbable subcutaneous fasteners.

“General surgeons are finding themselves under pressure because the user-friendly metal staplers that became very popular in the 1990s are not cost effective,” explains Rogers, CEO of Opus and longtime biomedical engineer. “When people really began doing cost analysis, the five minutes that a surgeon saved in the operating room did not compensate for the fact that their patient still had to come back to have the staples removed.”

Danielson approached Rogers with a concept for a new stapler and shortly thereafter the two began development on the SubQ It! skin closure system — a disposable, handheld surgical stapler that delivers bio-absorbable fasteners beneath the skin with one click of the device.

Check out our full case study on Opus’ SubQ It! stapler, and see how they used machined and injection-molded parts from Proto Labs to prototype the device’s entire thermoplastic assembly.

One thought on “Medical Device Prototyping With A Manufacturing Hand From Proto Labs

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>