Injection Molding: Aluminum vs. Steel Tooling

Aluminum molds are milled in rapid CNC machines.

Conventional injection molding typically uses steel tooling capable of producing millions of parts, however, it often takes months to manufacture a mold and a capital investment of $50,000 or more. But what if production demands call for smaller quantities? That’s where aluminum tooling is ideal. Here’s a quick look at the differences between steel and aluminum tooling.

Low-Volume Production with Aluminum Tooling

  • Mold production AND parts within 15 days or less
  • Low manufacturing costs with molds beginning around $1,500
  • Production quantities of up to 10,000 parts or more; depending on material type and geometry, some molds are capable of producing hundreds of thousands of parts
  • Simplified mold designs decrease manufacturing time and cost
  • Single and multi-cavity tooling: 1-, 2-, 4- and 8-cavity molds are possible depending on part size and complexity
  • Thermoplastic and thermoset materials identical to that of high-volume production materials; more than 100 different materials can be used including ABS, PC, PP, LCP, POM, and liquid silicone rubber
  • No maintenance fees and lifetime replacement of mold if damaged
  • Improved heat dissipation and without the need for messy cooling lines
  • Inexpensive mold-safe tooling modifications

High-Volume Production with Steel Tooling

  • Lower part cost when quantities increase
  • Part production in the millions
  • Multi-cavity tooling greater than 8 cavities
  • Part complexity can be increased
  • More finishing options

If you part volumes don’t stretch into the millions, if you need on-demand production parts within days, and if you’re looking to avoid risky tooling investments before your part design is truly validated, low-volume injection molding with an aluminum tool might be good option.

Once an aluminum mold is ready, part production begins almost immediately. This allows manufacturing to finish every order in three weeks or less.

At Proto Labs, we include a free interactive design for manufacturability (DFM) review within a few hours in every injection molding quote. In the time it takes to get the initial quote from a high-volume production molder, you can have several design reviews and a mold already in production.

If you have any further questions about rapid manufacturing at Proto Labs, check out or contact one of our application engineers at 877.479.3680 or

THE SHORT LIST: See You at Trade Shows This Fall

Look for the Proto Labs booth at various trade shows this fall. Here’s a brief roundup of where you’ll find us:


IMTS-Chicago-Sept. 12-17

The International Manufacturing Technology Show at Chicago’s McCormick Place is the largest manufacturing show in the Americas and will feature more than 2,000 exhibiting companies and over 114,000 registrants. Visit us at booth N-72 throughout the week. Proto Labs staffers are also presenting at the conference:

  • Jonathan Bissmeyer, Senior Quality Engineer: “Designing for the DMLS Process,” 1:15 p.m., Monday, Sept. 12, Room W192-B.
  • Greg Thompson, Global Product Manager: “Designing for Direct Metal Laser Sintering and Selective Laser Sintering,” 3:30 p.m., at the Additive Manufacturing Conference (co-located with IMTS).

    At a recent trade show in New York, Proto Labs staffers found time for a photo. From left, Eric Utley, Jenna Nyman, Abby Christensen, Kory Dirnberger, and Charlie Johnson.

MD&M-Minneapolis-Sept. 21-22

Medical Design & Manufacturing at Minneapolis’ Convention Center is the region’s largest medical technology event, with 5,000 industry professionals expected to attend. See us at booth 525.

As part of the show’s programming, Rich Baker, Proto Labs’ Chief Technology Officer, will present, “More Than Prototyping: Digital Manufacturing’s Role in Industry 4.0,” at 3:15 p.m. Wednesday, Sept. 21. Baker also will participate in a panel discussion on “3D Printing: The Brave New World of Manufacturing” at 11 a.m., Thursday, Sept. 22.

Device Talks-Boston-Sept. 28

Now in its fifth year, this gathering of medical technology professionals will include a day of workshops, panel discussions, and networking at the Boston Marriott Long Wharf.

Continue reading

DESIGN TIP: Choosing Industrial 3D Printing for Production Parts

Using 3D printing for fully functional end-use metal and plastic parts is becoming increasingly common in rapid manufacturing with industrial-grade processes like direct metal laser sintering (DMLS) and selective laser sintering (SLS).

Industrial-grade 3D printing is well suited to produce organic shapes, like this nylon turbine (left) and end-use production parts such as this titanium drill component (right).

With an expanding material selection and improving material properties, designers and engineers have another good option for small quantities of production parts.

Accordingly, our monthly design tip covers this emerging trend.

This month’s tip discusses:

  • Choosing the best 3D printing process for your application
  • Selecting the right thermoplastic and metal materials
  • Designing part geometry for 3D printing
  • Using SL, SLS, and DMLS for end-use production parts


EYE ON INNOVATION: GolfBoard Designers Take a Swing at New Approach to Golf Carts

Our search for innovation has led us to the golf course. Well, it is summer after all.

The makers of GolfBoard claim it is the greatest invention in golf since the graphite shaft and is forever changing the way golfers experience the game. Hyperbole aside, it does look like a fun alternative to riding a golf cart.

The GolfBoard is powered by a lithium-ion battery, and is a fully electric vehicle that golfers basically stand on and steer. Designers incorporated front and back gear boxes that provide power to all four wheels, plus a proprietary “Spring Deck” technology that uses flexible spring plates that provide a smooth ride. The GolfBoard also includes an industrial-grade electric motor and fully enclosed drivetrain for reliability and low maintenance.

More than 200 U.S. courses now offer GolfBoard rentals, and the product has been winning awards, including Best New Product Award at the 2014 PGA Merchandising Show, and the 2016 Best Club Transport Award from Golf Digest Magazine. The magazine calls it “a combination of electronic snowboard and golf cart” that “provides a bit of a workout for those feeling guilty about not walking.”

Beyond the golf course rental market, GolfBoards sell individually for $6,500.

WEBINAR: Designing for Direct Metal Laser Sintering

In our next webinar, we’re focusing on direct metal laser sintering—our industrial 3D printing process for metal parts. Join David Bentley, our DMLS expert, to learn why product designers are turning to DMLS for prototyping and end-use parts. The presentation will include:

  • An overview of DMLS including materials and design guidelines
  • A case study on an innovative bike design
  • An open Q&A session 

TITLE: Designing for 3D Printing: Direct Metal Laser Sintering
DATE: Thursday, August 25 at 1 p.m. CDT
REGISTER: Click here to sign up

Busy that day and can’t make it? Not a problem. You can still register and we’ll send a recording that can be watched on-demand. Also, feel free to forward this invite to your colleagues.