3D Printing Experts Discuss Technology’s Future

3D printing is the topic of conversation in our latest Journal issue, which focuses on the technology’s next dimension—how additive manufacturing is poised to make a giant leap forward in capabilities.3D printing

The cover story includes interviews with three leaders from the 3D printing industry who offer insight on a variety of topics, such as advancements in new machines and materials, a growing demand for 3D printing for production parts, and notable trends in software.

Another feature, “A Cloud-Based Future for CAD,” explores how 3D CAD design software is increasingly moving to cloud-based models, a trend with benefits for both product developers and manufacturers.

Elsewhere in the Journal, our Eye on Innovation column features a driverless bus, a 3D GoPro, and a DIY Bluetooth.

Read the entire Journal here.

We’re always on the hunt for though-provoking content, so send your cool project or article idea to our editor at angelo.gentile@protolabs.com.

Thanks and enjoy the issue!

Stereolithography: Sorting Out Surface Finishes

There are a number of factors—resolution, tolerance, material selection, surface finish—to consider when designing for the industrial 3D printing process of stereolithography (SL). For our latest tip, we’ll discuss the four stereolithography finishing options available at Proto Labs, and when it makes sense to use each.

Unfinished

Stereolithography (SL) technology uses a build platform that requires support structures for all features so they don’t float away or collapse during the build process. These support structures are removed after the build is complete, but they do leave visible markings on the part.

stereolithography proto labs

3D-printed parts are moved from the SL chamber after a build finishes. Supports are then removed, parts are UV cured, and a selected finish is applied.

In an unfinished state, after the support structures are removed, dots or nibs are noticeable where structures were attached to the part surfaces. So, when would leaving a part unfinished make the most sense?

  • When a clear part is desired with no custom finishing
  • If you have your own finishing capabilities, or have another shop that can perform post-build finishing
  • To achieve the best accuracy possible

Natural

A natural finish provides a surface finish that absent of dots or nibs, which leaves a more desirable cosmetic appearance. The surface is not as clear on the down-facing surfaces that had supporting structures, but the top surface would remain clear. When should you use a natural finish?

  • On small or delicate features that may be destroyed by additional finishing such as grit blasting
  • On clear parts where down-facing surfaces are not a cosmetic concern

Continue reading

INDUSTRY SPOTLIGHT: 3D Printing for Production Parts Gains Credibility

Why are some engineers so hesitant to use 3D printing for more than just development?

Engineers are hardwired and trained to make calculated decisions based on facts. Traditional manufacturing processes such as casting and molding have been around a very, very long time—since the Bronze Age—and time has perfected these processes and brought them to what they are today. Both industry experts and novices alike can benefit from hundreds of years of this process evolution. 3D printing processes are relatively new, especially when compared to casting or injection molding.

Motor mounts are among a growing list of automotive parts that are now manufactured using commercial-grade 3D printing.

Modern, commercial-grade printing equipment and processes are capable of predictable results that will ease the mind of the most skeptical engineer. DMLS (direct metal laser sintering) can produce repeatable results for parts that can be manufactured in no other known method. Proto Labs’ 3DP facility is not only ISO 9001:2008, but also AS 9100. This is the supplemental requirement established by the aerospace industry to satisfy DOD, NASA, and FAA quality requirements. This certification should give any engineer a sense of security.

Understanding some basic quality parameters around the processes can help to lay a foundation of credibility. For example, limits are set to the number of times base material can be used, or only virgin powder could be specified. This is no different than controlling the amount of allowable regrind into a plastic injection-molded part.

Rolls-Royce is a notable automaker now using commercial-grade 3D printing for some production parts.

Testing parts to confirm material properties are extremely common in DMLS. Building a standard tensile bar with each build is a great way to confirm batches of production are producing the desired results. This way the first batch can have destructive testing on the tensile bar and parts to confirm the material and process are producing parts with the specified properties. The future batches can test the tensile bar for confirmation the predictable results were achieved.

The aerospace industry has been embracing advanced manufacturing methods for some time now and the automotive industry has also been making great strides in this area. For example, recent articles have been published around the Rolls-Royce Phantom’s printed parts and BMW’s leading spot in adopting printing technologies.

DESIGN TIP: Choosing Industrial 3D Printing for Production Parts

Using 3D printing for fully functional end-use metal and plastic parts is becoming increasingly common in rapid manufacturing with industrial-grade processes like direct metal laser sintering (DMLS) and selective laser sintering (SLS).

Industrial-grade 3D printing is well suited to produce organic shapes, like this nylon turbine (left) and end-use production parts such as this titanium drill component (right).

With an expanding material selection and improving material properties, designers and engineers have another good option for small quantities of production parts.

Accordingly, our monthly design tip covers this emerging trend.

This month’s tip discusses:

  • Choosing the best 3D printing process for your application
  • Selecting the right thermoplastic and metal materials
  • Designing part geometry for 3D printing
  • Using SL, SLS, and DMLS for end-use production parts

READ FULL DESIGN TIP

WEBINAR: Designing for Direct Metal Laser Sintering

In our next webinar, we’re focusing on direct metal laser sintering—our industrial 3D printing process for metal parts. Join David Bentley, our DMLS expert, to learn why product designers are turning to DMLS for prototyping and end-use parts. The presentation will include:

  • An overview of DMLS including materials and design guidelines
  • A case study on an innovative bike design
  • An open Q&A session 

TITLE: Designing for 3D Printing: Direct Metal Laser Sintering
DATE: Thursday, August 25 at 1 p.m. CDT
REGISTER: Click here to sign up

Busy that day and can’t make it? Not a problem. You can still register and we’ll send a recording that can be watched on-demand. Also, feel free to forward this invite to your colleagues.