INDUSTRY SPOTLIGHT: Robotics Drive the Factory of the Future

Each generation will define how it interprets the term Robotics. I happen to fall at the tail end of Gen X and grew up with an understanding that robotics were simply for automating mundane tasks and the most exciting and truly useful applications were closer to sci-fi than reality.

These days, the reality is that some of the most practical and exciting developments in robotics have and are taking place in manufacturing. Yes, these tools of the trade are used to automate mundane tasks, reduce labor costs, and accelerate throughput. What most people do not know is what is fueling these advancements. It is technology driven, more on the virtual/software side than on the mechanical. This is the grounding of internet of things (IoT).

Manufacturing is an extremely savvy business that focuses on metrics such as Return on Investment (ROI), Return on Investment Capital (ROIC), and relationships between top and bottom line growth like no other. Mix this focus on financial metrics with mechanical intuition and then layer on some technology and now you have the factory of the future.

Follow the digital thread at Proto Labs (click to enlarge).

IoT and factory of the future are built on the concept of the digital thread (see graphic above). It is the electronic path and communication medium that is the backbone of state-of-the-art facilities. Let’s begin with an example we are all familiar with. The garage door opener is an awesome tool—when it’s raining you don’t have to get out of the car to close the door. But if your kids leave after you do, you have to ask yourself if they shut the door. Thanks to IoT, I can now get on my smartphone and verify that they closed the door at 7:10 a.m., in time to catch the school bus.

Now let’s bring this to robotics in a factory. End-of-arm tooling supporting post-secondary operations in an injection molding cell may pick a part, pass it to a laser scanner for physical inspection, and then place it into a pad printing fixture. This operation is quite simple and had been around for years, but today you have the ability to track each activity remotely, receive feedback, and collect data on performance.

Many companies that are focusing their efforts on the technology side of these improvements to their factories are in need of more custom real parts than ever before. This technology is driving the need for unique parts that can be 3D printed or machined.  Proto Labs is a leader in digital manufacturing and a crucial supplier for unique parts to support this growing business sector.

See how digital manufacturing is changing the industry in our recent Journal cover story. Read here.

WHITE PAPER: Data, Digital Threads and Industry 4.0

By now, you’ve probably come across the term Industry 4.0. And yes, it can seem like just another term in the buzzword dictionary, but many of the world’s leading technology and manufacturing companies — including yours truly — rely on it, every day. It’s how we take your 3D CAD model and turn it into a finished part faster than anyone else.

Download our free white paper to learn how companies are accelerating product development with software and analytics.

It’s important to note that Industry 4.0 isn’t only about 3D printing and new manufacturing processes. Rather, it’s about connecting automated front-end software with back-end hardware for more informed decision-making and efficient execution.

We refer to the link between each of the processes as the digital thread, which is made possible by software and technology.

Download the free white paper to learn how your business can tap into the power of the digital thread and join the next industrial revolution.

DOWNLOAD THE WHITE PAPER

Auto-mation: Can Market Adoption of Autonomous Cars Match the hype?

The automotive industry, including the disruptive tech giants, are investing tremendous amounts of funding and human capital into the development of autonomous vehicles and related technologies. Evidence of this is General Motors’ $500 million investment in Lyft and $1 billion into the upcoming acquisition of Cruise Automation Inc. It’s difficult to read about the automotive industry without encountering discussions around autonomous driving. The auto industry is hiring software developers at a pace once that was once limited to mechanical and industrial engineers.

A rendering of possible autonomous driving interaction. Source: General Motors

Market Adoption … Eventually
So, why is the auto industry going down this path when a majority of the American consumers flat out do not want a driverless car or trust the concept yet? A recent J.D. Power survey found that just over half of Gen Z and Gen Y are interested — that’s surprisingly low, since these groups are more comfortable with public transportation and delay owning a car more than previous generations. And only about 41% of Gen Xers support self-driving technology, a rate that shrinks further for the baby boomers at 23%. It’s important to note here that the peak age for purchasing a new car is 43 years old.

The answer lies in the fact that the “R” in automotive R&D historically occurs 10 to 20 years before actually moving to production lines. This extended timeline frequently means the industry is working on things the consumer has not yet even taken into account. But as discussed in an earlier post, recent tech giant disruptions are shortening this product development cycle.

Continue reading