THE ENGINEERIST: Designing with Moldability in Mind

Editor’s Note: The Engineerist is a three-part blog series written by Michael Corr, founder of Los Angeles-based manufacturing consulting firm, DuroLabs. This is part three. The first two installments can be found here.

Intelligence does not automatically equate to experience, and in hardware, product development experience goes a long way.

I was recently hired to take over management of an engineering team at an early-stage company. A team of mechanical, electrical, and firmware engineers was already in place, and while I noticed they were younger than most teams I’ve managed before, I was incredibly impressed with their intelligence and creativity. That energy of young and enthusiastic engineers was a convincing factor for me to accept the position.

An Introduction to Manufacturability
Since the team had already released products to customers, I took a passive approach and just observed the established processes while they worked on the next version of the product. I injected comments and feedback on occasion, but trusted them to repeat their existing methods as they prepared for production. However, the more I got involved in reviewing the designs, I realized there was a common theme across the younger engineers—moldability was not factored into their designs. Many of the mechanical prototype parts coming off the Stratasys desktop 3D printer were designed to satisfy the performance requirements, but would at best, be expensive to manufacture, and at worst, impossible.

Adding draft angles to design helps facilitate ejection of a part from a mold, and improves overall moldability. The exact degrees of draft angles are dependent on part geometries.

I took several of the MEs aside and asked a few direct questions challenging them on how they envisioned an injection mold being designed for their parts. Blank stares were the only answers I received. I pointed out that one design had an undercut and another had no draft angles for clean part ejection. Again, blank stares. That’s when I realized that these engineers had become trained on producing parts using 3D printing tools only. While 3D printing has a made tremendous impact in prototyping and even production-grade parts, it also has its caveats. Continue reading

VIDEO: Lockheed Martin Drone Takes Flight with help from Proto Labs

The drone market in the U.S. is expected to soar to an $82-billion industry in the next decade, the New York Times recently reported. With that robust market in mind, Lockheed Martin, the aerospace, defense, and technology giant, developed a small, fold-up, lightweight drone, the Indago Quadcopter UAV (unmanned aerial vehicle), turning to Proto Labs for quick-turn prototyping and low-volume production.

Proto Labs’ automated design for manufacturability (DFM) and quoting system was especially helpful in taking the Indago from 3D-printed prototypes to injection-molded parts, and getting finished parts delivered in days and weeks. The video tells the story:

 

On-Demand Webinar: Improving Manufacturability with ProtoQuote

Last week we hosted a quick webinar that explored how designers can use ProtoQuote to improve the manufacturability of their design. It’s available on-demand here.

Key Takeaways

  • How to get free design for manufacturability feedback for your part
  • Improving manufacturability by adding draft, adjusting wall thickness and incorporating radii
  • How to navigate ProtoQuote for each of our processes: 3D printing, CNC machining and injection molding

Top Questions Asked

Will Proto Labs help simplify my CAD file?
Yes, along with our automated DFM feedback, we have a full staff of engineers that will work with you on simplifying your design. Once you upload a 3D CAD file, they will look at it and explore ways of improving overall manufacturability and provide guidance based on your part’s requirements and intended application.

Are there any general design tips to avoid parts having side-pulls or side-actions?
Our free design cube shows the different side-actions that we use to produce parts. And, if you have snap features on your part that might require side-actions, you can cut away that geometry and use a pass-through core to alleviate the need for a side-pull or cam.

We also have resources that discuss implementing side-actions, as well as eliminating the need for them:

What are the material options for opaque materials for lighting applications?
We offer polycarbonate materials that provide transparent options for lighting and other applications requiring transparent materials. We provide multiple PC colors: amber, green, blue, transparent and even infrared.

Stay Tuned
Look for additional technical webinars throughout the year on various 3D printing, CNC machining or injection molding topics. The next webinar will be part one in a series of 3D printing webinars and we’ll discuss designing for stereolithography.