Millennials More Upbeat on Manufacturing’s Future

A more optimistic outlook among millennials about the future of manufacturing could bode well for an industry that is contending with an ongoing skills shortage.

Nearly half of U.S. millennials (47 percent) think there will be enough qualified professionals to fill manufacturing job demands in the next 10 years, according to a survey by Proto Labs. That’s a marked increase from the only 35 percent of Generation Xers and baby boomers who think the jobs demand will be met.

millennials in manufacturing

The rosier outlook may be linked to millennials’ changing perceptions of manufacturing. According to the survey, 37 percent of millennials see manufacturing as a high-tech career choice—notably higher than both Generation Xers (27 percent) and baby boomers (23 percent). Also, 49 percent of millennials believe engineering is a needed skill in today’s manufacturing sector, compared with only 41 percent of baby boomers.

Digital Transformation of Manufacturing
Digital manufacturing has paved the way for a larger breadth of opportunities in addition to the plant floor roles solely and traditionally associated with the industry. Today, top manufacturers must fill a range of skilled positions—from mold techs, to applications engineers, to software developers. The digitalization of the industry has transformed yesterday’s manual nature of manufacturing to the high-tech environment it is today. It is increasingly important for the manufacturing industry to continue shifting its outdated public image, as, in the next decade, it is estimated that 2 million out of the 3.5 million manufacturing jobs will go unfilled due to talent shortages (Manufacturing Institute).

millennials infographic

Click to enlarge

“I expected to begin my career at what you might consider a traditional technology company, like Facebook, Amazon or Uber,” said Andrew Crocker, a 25-year-old software developer at Proto Labs who joined the company straight out of college. “Manufacturing wasn’t necessarily on my radar. But digital manufacturing has changed everything. It’s created a high demand for skills like mine, and it’s provided me a great career opportunity.”

Millennials Optimistic About Manufacturing Salaries
The financial benefit of a career in manufacturing is another perception that’s changing among young people. According to the survey, 40 percent of millennial respondents think a career in today’s manufacturing industry is high-paying, compared with only 26 percent of Generation Xers. Indeed, the average U.S. manufacturing worker makes more than $70,000 a year, according to the Society of Manufacturing Engineers.

“Digital manufacturing is revitalizing our industry and is igniting new opportunities,” said Vicki Holt, president and CEO for Proto Labs. “The skills gap presents a critical roadblock for all of us. But it’s encouraging to see a renewed optimism from a new generation of workers, and to hear that they understand this isn’t their grandparents’ manufacturing industry. Much work remains ahead of us, but this is a good start.”

About the Survey
The public-opinion online poll was commissioned by Proto Labs and conducted by ORC International’s CARVAN® Geographic Omnibus in September 2016. It consisted of a sample of 1,023 adults comprising 512 men and 511 women, 18 years of age and older. The margin of error is +/- 3.1 percentage points for the full sample.

How to Select the Right 3D Printing Technology

The term 3D printing encompasses several manufacturing technologies that build parts layer-by-layer. Each vary in the way they form plastic and metal parts and can differ in material selection, surface finish, durability, and manufacturing speed and cost.

Selecting the right 3D printing technology for your application requires an understanding of each process’ strengths and weaknesses and mapping those attributes to your product development needs. Let’s first discuss how 3D printing fits within the product development cycle and then take a look at common 3D printing technologies and the advantages of each.

Metal 3D-printed parts can enable design features not possible with traditional manufacturing processes.

3D Printing for Prototyping and Beyond
It’s safe to say 3D printing is most often used for prototyping. Its ability to quickly manufacture a single part enables product developers to validate and share ideas in a cost-effective manner. Determining the purpose of your prototype will inform which 3D printing technology will be the most beneficial. Additive manufacturing can be suitable for a range of prototypes that span from simple physical models to parts used for functional testing.

Despite 3D printing being nearly synonymous with rapid prototyping, there are scenarios when it’s a viable production process. Typically these applications involve low-volumes and complex geometries. Often, components for aerospace and medical applications are ideal candidates for production 3D printing as they frequently match the criteria previously described. Continue reading

NEW JOURNAL: How Technology is Transforming Injection Molding

The new issue of Proto Labs Journal is out and includes a cover story focusing on the digital transformation of injection molding. A related, second feature story explores the pros and cons of printed plastic molds.

The cover story reports on how automating the front-end of the manufacturing process has reinvented injection molding, and served as a game-changer for the entire industry.

The related feature, “3D-Printed Molds,” advises product designers, engineers and developers to take a careful look at part finish, size, design capabilities, mold longevity considerations and cost when comparing printed plastic molds to aluminum tooling.

Elsewhere in the Journal, look for our Eye on Innovation feature, which highlights cool new products and technology you should know about.

Read the entire Journal here.

We’re always on the hunt for though-provoking content, so send your cool project or article idea to our editor at angelo.gentile@protolabs.com.

Thanks and enjoy the issue!

On-Demand Webinar: Designing for Stereolithography

Last week we kicked off our webinar series on designing for 3D printing. The first session focused on stereolithography (SL) and it’s available on-demand here.

Key Takeaways

  • Properties of commonly used stereolithography materials
  • The unique benefits of stereolithography such as feature resolution and recommended applications
  • General design tips for overhangs, support structures, finishes and more

Top Questions

Can you describe the resolution of SL parts in terms of microns?
There are 25 microns per 0.001 in. Normal resolution builds in 100 micron layers, high-resolution builds in 50 micron layers and micro-resolution builds in 25 micron layers.

The minimum X/Y resolution would be 250 microns in normal resolution, 100 microns in high-resolution and 50 microns in micro-resolution.

What’s the cost difference between normal- and high-resolution SL parts?
There’s no set number since it depends on the part’s geometry. But for parts under 1 in., customers will see a relatively low cost difference between normal- and high-resolutions.

Height is a primary driver of cost so once you start approaching 2 to 3 in. build heights it can start to differentiate more dramatically. But, with our instant quoting process it’s easy to compare these costs simply by clicking back and forth and comparing resolutions.

What’s the rule of thumb for wall thickness in hollow structures?
We try to stay above 0.03 in. and a general rule is 0.01 in. wall thickness per inch of the part. For example, a part that’s 8 in., you’ll want to shoot for 0.08 in. wall thickness for a well-supported hollow part.

More 3D printing webinars on the way…
The next webinar on our calendar will be on accelerating medical device development with rapid prototyping, which you can sign up for here. And, in the coming months we’ll have more 3D printing webinars that will focus on designing for selective laser sintering as well as direct metal laser sintering.

Automation, Data, Testing and Iteration Dominate IoT Fuse

The second annual IoT Fuse brought together the Minnesota tech community for a day full of everything technology. The sold out conference connected engineers, developers, 

entrepreneurs and technologists to share how Internet of Things (IoT) technology is changing businesses with hands-on workshops, panel discussions and case studies. Among more than 40 presentations, Proto Labs VP Rob Bodor, shared how digital manufacturing and automation is accelerating the development of IoT products.

The World is Not a Desktop
The day opened with a fitting keynote from Amber Case, a “cyborg anthropologist” and UX designer. She presented the idea of calm technologies ­— meaning technology that follows these principles:

  • Technology should require the smallest possible amount of attention
  • Technology should inform and calm
  • Technology should make use of the periphery
  • Technology should amplify the best of technology and the best of humanity
  • Technology can communicate, but doesn’t need to speak
  • Technology should work even when it fails
  • The right amount of technology is the minimum needed to solve the problem
  • Technology should respect social norms

Much of Case’s message centered on the idea that innovation is not synonymous with over-engineered devices. She described how just a minor change like adding a camera to our mobile phones can be revolutionary.

She also referenced the groundbreaking research from Xerox PARC innovation center during the 1970s and 80s where they created what is now know as the graphic interface. Her point being that you can innovate faster by understanding the previous work of others.

For more information on Amber Case’s work, visit calmtech.com.

Navigating Low-Fidelity and High-Fidelity Prototyping
Next, we heard from Eric Nyaribo, a design engineer at 3M automotive. He discussed strategies for prototyping and how engineers can use different types of prototyping to convey ideas and encourage interaction between team members.

He shared the concept of low-fidelity and high-fidelity prototyping and when one is more appropriate than the other.

A low-fidelity prototype is a rough concept or first iteration of an idea, it doesn’t have to be functional or pretty. Often a low-fidelity prototype is hacked together with spare parts.The main purpose of a low-fidelity prototype is to kick-off the product development process and inspire team members to share their ideas.

He defined a high-fidelity prototype as a product that is finalized with colors, design and is functional. As he said, “It’s that prototype you show to a customer and they want to keep it for themselves.”

One of Eric’s most valuable pieces of advice was that just because a prototype is closer to the final product doesn’t mean it’s the best kind of prototype for that point in the development cycle.

The value of a prototype isn’t in the model, it’s in the interactions, conversations and feedback they inspire. He also shared how prototyping helps reduce design risk since you can validate your design with small successes throughout the product development cycle. This helps gain support from key stakeholders and encourages the product team.

Continue reading