Webinar: Selecting the Right Material for 3D Printing

Join Proto Labs’ team of 3D printing application engineers as they share how to navigate the material selection process for three additive manufacturing processes: stereolithography (SL), selective laser sintering (SLS), and direct metal laser sintering (DMLS).

In order to help you understand every variable that goes into selecting the right 3D printing material, the presentation will share:

  • Material properties attainable with SL, SLS, and DMLS
  • When to use each process and common applications
  • 3D printing specifications at Proto Labs

TITLE: Selecting the Right Material for 3D Printing
DATE: Thursday, December 15 at 11 a.m. CST
REGISTER: Click here to sign up

The presentation will conclude with an open Q&A session, so bring your 3D printing questions! Also, please feel free to forward this invite if you have a colleague or friend that may be interested.

Webinar Round-Up: Overmolding Principles, Designing for Machining, and More

In our most recent webinar, we looked at 12 key factors to help you design durable overmolded parts. If you missed the live presentation, it’s now available on-demand. The webinar covers the overmolding process and design principles that determine the quality of flexible-to-rigid bonds.

Learn how to design for overmolding.

Upcoming Webinars
Join us Thursday, Dec. 1, to learn about designing for CNC machining including material considerations that can reduce machining costs and lead to higher quality parts. Click here to sign up.

Additionally, on Thursday, Dec. 15, we will present on selecting the correct 3D printing material for your part. We’ll cover the entire spectrum of materials—from ABS-like plastics to fully dense metals. Click here to sign up.

Proto Labs’ On-Demand Webinars 
Interested in learning more about rapid manufacturing? Below you’ll find a complete archive of our past webinars (click the title to view).

Designing for 3D Printing: Selective Laser Sintering

  • SLS material considerations
  • Design guidelines for functional prototypes and production parts

How to Choose the Right Thermoplastic Material

  • Factors in thermoplastic material selection
  • Overview of common thermoplastics including the effects of additives

Designing for 3D Printing: Direct Metal Laser Sintering

  •  DMLS design considerations including surface finishes, internal features, stresses, and support requirements.
  • Reducing multi-part assemblies into a single component

A Cloud-Based Future for 3D CAD

3D CAD Design software is increasingly moving to cloud-based models, greatly benefitting product developers and manufacturers alike.

The tools available to designers have changed mightily over the last few decades. Long gone are drafting boards, replaced by progressively more intelligent software and cloud-based collaboration platforms. This new and improved design landscape offers designers, engineers, and OEMs lower development costs and faster time to market, and is an integral part of any digital manufacturing environment.

What’s new in computer-aided design (CAD)? Plenty. Pick any leading CAD software on the market today: Aside from greater intelligence, usability, mobility, and a plethora of cool features that were unavailable even a few years ago, virtually all providers offer or will soon offer cloud-based deployment for their customers.

Case in Point
One of these is PTC Inc., developers of the Creo design suite, WindChill PLM, and a range of other manufacturing software solutions. Paul Sagar, PTC’s vice president of product management, said his company will be offering cloud versions of many of its products by year end, and that moving to the cloud is a logical step for companies struggling with routine maintenance of large software deployments, or needing to invest in new hardware every few years. “High-end cloud solutions eliminate all that effort and expense, while still providing the power associated with on premise CAD installations,” he explained. That power is about to get much stronger as PTC and other CAD providers tighten their embrace of digital manufacturing. For example, ThingWorx, PTC’s industrial internet of things (IIoT) development platform, has been adopted by General Electric and others as part of an industry-wide push toward smarter shop floors, more connected CAD systems, and greater transparency throughout the supply chain.

“From a design perspective, the IIoT and digital manufacturing are going to significantly change the way we do things,” Sagar said. Currently, “we design products in a vacuum. We start with a basic set of requirements, collate whatever historical knowledge is available, and then make assumptions. Those assumptions might cost the business a lot of money.” Continue reading

3D Printing Design Fundamentals

Download “Design Essentials for 3D Printing”

3D printing opens up new design possibilities like hollow parts and complex organic geometries, but it’s still important to keep a few fundamentals in mind to take full advantage of 3D printing’s capabilities.

Understanding materials and processes as well as considerations like support structures and feature resolution are crucial for success. These design essentials will help you make the most out of your 3D-printed parts and accelerate your product development efforts.

In the following guide to 3D printing we focus on these topics:

  • 3D printing prototypes and fully functional, end-use parts
  • Designing for metal 3D printing
  • Comparing additive manufacturing processes
  • Material properties and selection

Click here to download Design Essentials for 3D Printing.

Take Full Advantage of CNC Machining’s Capabilities

Product designers in need of prototypes or end-use parts frequently turn to CNC machining for its quick-turn capabilities. Machining isn’t new, but just like any other digital technology, its functionality has expanded in recent years.

That’s why we assembled some tips for how to get the most out of today’s CNC machining. This will help you design higher quality machined parts and better use CNC machining to bolster your product development efforts.

Our Design Essentials for CNC Machining covers the following topics:

  • Designing cylindrical parts to be turned
  • Threading
  • Transition from 3D printing to machining
  • Outsourcing to a machine shop
  • Cost reduction tips for CNC machine

Click here to download Design Essentials for CNC Machining.