Security Device with GPS Tracking Wins Cool Idea! Award

Product designers at Sleeping Beauty, a German-based company developing an internet of things security device, are the latest recipients of the Proto Labs Cool Idea! Award.

After having his automobile stolen, Jakob Lipps, co-founder of Sleeping Beauty, went searching for a solution to make sure it never happens again. Unable to find a solution, Jakob and his co-founder began developing it on their own. This led to the creation of a compact security device now known as Sleeping Beauty.

Photo courtesy: Sleeping Beauty

Sleeping Beauty uses GSM and GPS technology to track the location of valuable possessions anywhere within cellular network coverage. Thanks to the “Prince Charming” processor (ARM Cortex M0+) inside Sleeping Beauty, the standby time is unprecedented. Sleeping Beauty will sleep undisturbed for up to one year and report its location and remaining battery life at regular intervals via the smartphone app. In Sleep Mode, “Prince Charming” needs only 270 nanoampere. If the device detects movement, it will wake up and send location data to its owner’s smartphone.

“In a market cluttered with complex gadgets, Sleeping Beauty is an elegant solution for a variety of common problems,” said Proto Labs founder Larry Lukis. “Its simple and intuitive design makes it well-suited to succeed in the consumer marketplace. We are excited to support them as they bring the device into production.”

HAVE AN INNOVATIVE PRODUCT DESIGN? APPLY FOR THE COOL IDEA! AWARD TODAY!

3 Ways to Improve Operations with On-Demand Production

On-demand production of parts not only accelerates time to market, but reduces total cost of ownership since it eliminates the large capital expenses of traditional injection molding. Here are three ways on-demand production reduces your design risk, accelerates your product’s time to market, and saves you money along the way.

1. Bridge Tooling
Once you’ve finalized your product design, there’s often a gap between the end of product development and production. Leveraging rapid injection molding with cost effective, aluminum tooling can help you get to revenue more quickly while you wait for your production manufacturer to finalize steel tooling.

2. Supply Chain Emergencies
On-demand manufacturing provides a reliable alternative if global shipping delays or other disruptions in your supply chain arise—minimizing any potential loss of revenue. Further, products with high demand volatility can be more easily managed with on-demand manufacturing.

3. Low-Volume Production Runs
Before committing to large-volume production runs, validate your product design with low-volumes. Pilot runs can aid in testing assembly processes or gauging market demand. And, on-demand production is an economically viable solution for products with relatively low sales volumes—typically in the few thousands or hundreds of units.

Click to enlarge the on-demand manufacturing infographic:

The Short List is a regular compilation of quick tips, trends, and timely topics of interest.

Design Complex Components with Insert Molding

Low-volume injection molding isn’t limited to just simple parts. At Proto Labs, we have the ability to manufacture complicated parts using side-actions, hand-loaded inserts, overmolding, and have now started beta testing our insert molding process.

Instead of a mold that produces a final part using two separate shots like overmolding, insert molding generally consists of a preformed part—often metal—that is loaded into a mold, where it is then overmolded with plastic to create a part with improved functional or mechanical properties.

A threaded insert is placed atop a mold core where plastic is molded over it to form the final component.

Threaded Inserts
One way insert molding is leveraged is with threaded inserts, which reinforce the mechanical properties of plastic parts’ ability to be fastened together, especially over repeated assembly. Self-tapping screws work well with softer plastics, but they can become easily worn and/or cross threaded, and fail to perform well, which results in damaged parts that need to be replaced.

Continue reading

Webinar: Designing for Overmolding

Join us for a webinar alongside RTP Company as we address common questions related to overmolding. We’ll discuss how to design more durable overmolded parts and what it takes to achieve strong adhesion between your part’s two materials.

gasket-overmolding

Overmolding produces two-material, plastic parts.

The presentation will include the following:

  • 12 key overmolding materials
  • Design factors that determine quality of flexible-to-rigid bonds
  • Methodology used to measure bonding strength
  • Differences between low- and high-volume overmolding

TITLE: Overmolding: TPE Multi-Material Molding, Achieving Melt Adhesion
PRESENTER: Steve Brenno, Sr. Product Development Engineer, RTP Company
DATE: Tuesday, November 15 at 1 p.m. CDT
REGISTER: Click here to sign up

And, if you can’t attend, you can still register and receive an on-demand version. Also, feel free to forward this invite to your colleagues.

THE ENGINEERIST: Designing with Moldability in Mind

Editor’s Note: The Engineerist is a three-part blog series written by Michael Corr, founder of Los Angeles-based manufacturing consulting firm, DuroLabs. This is part three. The first two installments can be found here.

Intelligence does not automatically equate to experience, and in hardware, product development experience goes a long way.

I was recently hired to take over management of an engineering team at an early-stage company. A team of mechanical, electrical, and firmware engineers was already in place, and while I noticed they were younger than most teams I’ve managed before, I was incredibly impressed with their intelligence and creativity. That energy of young and enthusiastic engineers was a convincing factor for me to accept the position.

An Introduction to Manufacturability
Since the team had already released products to customers, I took a passive approach and just observed the established processes while they worked on the next version of the product. I injected comments and feedback on occasion, but trusted them to repeat their existing methods as they prepared for production. However, the more I got involved in reviewing the designs, I realized there was a common theme across the younger engineers—moldability was not factored into their designs. Many of the mechanical prototype parts coming off the Stratasys desktop 3D printer were designed to satisfy the performance requirements, but would at best, be expensive to manufacture, and at worst, impossible.

Adding draft angles to design helps facilitate ejection of a part from a mold, and improves overall moldability. The exact degrees of draft angles are dependent on part geometries.

I took several of the MEs aside and asked a few direct questions challenging them on how they envisioned an injection mold being designed for their parts. Blank stares were the only answers I received. I pointed out that one design had an undercut and another had no draft angles for clean part ejection. Again, blank stares. That’s when I realized that these engineers had become trained on producing parts using 3D printing tools only. While 3D printing has a made tremendous impact in prototyping and even production-grade parts, it also has its caveats. Continue reading