WEBINAR: Improving Manufacturability with ProtoQuote

Join us for a webinar on improving part manufacturability. Our technical specialist Tony Holtz will demonstrate how to navigate ProtoQuote to optimize your design for 3D printing, CNC machining or injection molding. 

tonyholtz

In case you’re unfamiliar with ProtoQuote, it’s our fully automated quoting and design analysis software. Simply put – it makes your life a whole lot easier. It allows you to know exactly how much a part will cost and provides an analysis of your design within hours.

Sign up and learn how to tap into the full potential of ProtoQuote and its design for manufacturability analysis:

TITLE: Improving Manufacturability with ProtoQuote
DATE:  Thursday, May 26 at 1 p.m. CDT
LINK: Click here to register!

At the end of the presentation, there will be time for a Q&A session.  Have a colleague who might be interested? We’d love to have them join as well. And if you can’t make it at the specified time, you can still register and we’ll send you a recording afterward.

DESIGN TIP: Improving Part Design with Uniform Wall Thickness

Designing parts with consistent wall thickness is a fundamental rule of plastic injection molding, and ignoring it can lead to sink, warp and inaccurate or non-functional parts. Yet the functional requirements of consumer, medical, aerospace and industrial products often leave designers little consideration for the material flow and fill properties of plastic, both of which are at least partially determined by wall thickness.

Pay close attention to rib-to-wall thickness ratios. To prevent sink, the thickness of the rib should be about half of the thickness of the wall.

This month’s tip discusses:

  • Guidelines to avoid cosmetic defects associated with thin and thick features
  • Material alternatives to improve wall thickness consistency
  • Important questions to ask about material properties
  • The benefits of design for manufacturability analysis

READ FULL DESIGN TIP

On-Demand Webinar: Choosing the Right Rapid Manufacturing Method

We recently hosted a 30-minute webinar on: Choosing the Right Rapid Manufacturing Method for Plastic Parts. If you missed it, no worries. You can still watch it on-demand HERE.

What did you miss?
We discussed the benefits of rapid manufacturing for plastic components and how to select the correct manufacturing process:

  • 3D printing, machining and molding processes and specifications
  • Material selection and properties for each process
  • Advanced molding materials like thermally conductive plastic and liquid silicone rubber

Top 3 Questions Asked
How long will you keep a mold and do you inform the customer if you’re going to get rid of it?
We’ll store the mold for one year from the last order unless it is requested to keep in storage, and we’ll notify the customer of inactivity to if they would like the mold disposed of or retained in storage.

Is there any limit on volume for injection-molded parts?
No, you can get injection-molded parts in quantities of 25 to 10,000+ with several molds even surpassing 100,000 parts. We have the ability for single and multi-cavity molds dependent on size and complexity.

Can Proto Labs be used for light pipe assemblies in PC, PMMA and silicone?
Yes, we have molded countless parts in those materials for light pipe assemblies. Mold finish should be polished to a SPI-A2 with special attention made to the mold build for ejector pin location, gate location and parting lines.

Stay Tuned
Look for additional technical webinars throughout the year on various 3D printing, CNC machining or injection molding topics. The next webinar will discus how to navigate through Proto Labs’ design for manufacturability (DFM) feedback.

WEBINAR: Rapid Manufacturing Methods for Plastic Parts

Tony Holtz, Tech Specialist.

You’re invited to join Proto Labs’ live webinar presentation on rapid manufacturing. The free webinar will be hosted by our technical specialist Tony Holtz and last around 45 minutes with a Q+A to follow.

You’ll hear about the different industrial 3D printing, CNC machining and injection molding processes at Proto Labs, and learn which one is best suited for your next project, based on the project’s material requirements, quantities and lead times.

TITLE: Choosing the Right Rapid Manufacturing Method for Plastic Parts

DATE: Thursday, April 21 at 1 p.m. CDT

REGISTER:
http://event.on24.com/wcc/r/1158589/3BE5D1B5A337F26F67DEE106F834E163

Unable to attend? Register anyway and we’ll email you the recording afterward!

TIPS WITH TONY: Replace Metal with Plastic to Save Weight, Cost

To decrease weight and potentially cost, you can replace metal with plastic on certain parts through 3D printing and injection molding. At Proto Labs, we use industrial 3D printing process stereolithography (SL) to produce thermoplastic-like parts that have a nickel coating on the surface. This offers the increased strength of aluminum die-cast components, without the weight. With injection molding, the introduction of thermally conductive plastics has broken new ground when looking for heat dissipation of expensive heat sinks.

Stereolithography parts built with SLArmor have a metal coating applied over a thermoplastic-like base.

SLArmor involves a ceramic-filled DSM Somos material, which has a metal coating applied to achieve the look, feel and, most importantly, comparable strength of aluminum without added weight. SL is a cost-effective prototyping method for initial parts that mimic metal before moving to higher volumes of die-casted parts.

The material properties of SLArmor are greatly improved in regards to heat deflection, tensile strength, elongation at break and elasticity. The chart below shows exactly how the material relates to die-cast aluminum in three different thicknesses that can be applied based on geometry of SL parts. Note that the thickness of the nickel plating may vary on each part due to the ability to apply the coatings.

Continue reading