TIPS WITH TONY: Additive Manufacturing for Microfluidics

Prototyping small volumes of microfluidic parts has traditionally been difficult using CNC machining or injection molding, but Proto Labs offers microfluidic fabrication through additive manufacturing (3D printing) for just this purpose.

Microfluidics typically requires very flat surfaces, and clear and thin/shallow features that are difficult to produce in a mold that is milled and hand polished. These tiny features are not easily distinguishable, requiring careful polishing and injection molding pressures can sometimes role the edges even further, not to mention the effect that the ejector pins have on the part surface. Ejector pins play a huge factor in removing the part from the mold and can cosmetically impact microfluidic parts that are molded. We will continue to injection mold microfluidics, but please first discuss these projects with a customer service engineer at Proto Labs.

Additive Approach
Additive microfluidics changes all of this as ejector pins are a non-factor. We use stereolithography (SL) to produce parts using an ultraviolet laser drawing on the surface of a thermoset resin, primarily our Somos WaterShed XC 11122 material. High-resolution SL is able to produce features as thin as 0.002 in. layers to provide the fine detail that microfluidics require. We recommend channel sizes of 0.025 in. square cross sections with a minimum wall thickness of 0.004 in. for X and Y dimensions and 0.016 in. for the Z dimension. Of course, we can produce features smaller than this, but it would need to be carefully reviewed by our engineers before the build begins.

Continue reading