THE ENGINEERIST: Mitigating Production Risk with Prototypes

Editor’s Note: The Engineerist is a three-part blog series written by Michael Corr, founder of Los Angeles-based manufacturing consulting firm, DuroLabs. This is part one.

Startup companies have limited time and money, and, rightfully so, treat them as precious resources. There is constant pressure to get products out to the market fast, and when cash is limited, there is little margin for mistakes.

As an engineering manager, my responsibility is to ensure that the development processes being used by my team to bring parts to production are reliable, repeatable, and properly mitigate risk. For high-volume production, injection molding is the best option for plastic parts but it can be expensive and time consuming—two factors that can severely impact the success of a product launch if there are mistakes.

Waiting 12 to 16 weeks for first articles off a steel mold can be an eternity for a company pressured to get products into production in a shortened nine-month time frame. Any delays only compound the issue, adding pressure on myself, my team, and the company as a whole.

CAD model

Analysts at Proto Labs prepare CAD models for manufacturing.

Automated Quoting
When I was first introduced to Proto Labs almost 10 years ago, I was impressed with its commitment to leveraging modern technology. Its quoting process was simple and quick due to automated online tools. This allowed me to independently configure part options without having to go back and forth with a sales rep to update quotes and lead times. The automation saves hours, if not days, in evaluating various options. Additionally, the design for manufacturability feedback tools, which automatically highlight problems and areas of concern in the parts, save days to weeks of time and potentially hundreds to thousands of dollars by alleviating the risk of re-spinning due to an erroneous part. Again, with time being a limited commodity and a close watch on development dollars, these attentions to detail were very important to me.

The Case for Milled Prototypes
Prototyping before production is necessary to mitigate this risk but it can potentially cost money and take time to produce parts, so it’s important to choose your prototype runs wisely. One risk-mitigating technique I’ve incorporated into my mechanical engineering team’s process is to always produce a CNC-milled prototype of any part that is identified to be injection molded for production. This seems like trite advice, but I was amazed at how often engineering teams overlook the value of this step. Even 3D printing, another valuable prototyping tool, is often not as effective as a milled part if a move to molding is imminent. The advantage of the milled part is a closer approximation to the final molded material properties—not only in strength but also look, feel, and toughness when handled.

CNC machining

Proto Labs has hundreds of CNC machines, which enable quick-turn milling of functional prototypes and production parts.

I have now built several dozen parts with Proto Labs, so I can attest to the quality and expediency of the parts. In just a few days and not much investment, one can have several milled parts in-hand and ready for evaluation. Proto Labs’ extensive library of material options has also allowed me to select the same exact plastic to be used in the eventual injection-molded parts. This flexibility paired with comparable tolerances and resolution to final injection-molded parts, allows me to reliably use milled prototypes for a full form and fit check. In many cases, I can even use the parts for structural and environmental performance tests, so we can evaluate and make any final tweaks before cutting steel without having to cross our fingers that nothing goes wrong.

Continue reading

Automation, Data, Testing and Iteration Dominate IoT Fuse

The second annual IoT Fuse brought together the Minnesota tech community for a day full of everything technology. The sold out conference connected engineers, developers, 

entrepreneurs and technologists to share how Internet of Things (IoT) technology is changing businesses with hands-on workshops, panel discussions and case studies. Among more than 40 presentations, Proto Labs VP Rob Bodor, shared how digital manufacturing and automation is accelerating the development of IoT products.

The World is Not a Desktop
The day opened with a fitting keynote from Amber Case, a “cyborg anthropologist” and UX designer. She presented the idea of calm technologies ­— meaning technology that follows these principles:

  • Technology should require the smallest possible amount of attention
  • Technology should inform and calm
  • Technology should make use of the periphery
  • Technology should amplify the best of technology and the best of humanity
  • Technology can communicate, but doesn’t need to speak
  • Technology should work even when it fails
  • The right amount of technology is the minimum needed to solve the problem
  • Technology should respect social norms

Much of Case’s message centered on the idea that innovation is not synonymous with over-engineered devices. She described how just a minor change like adding a camera to our mobile phones can be revolutionary.

She also referenced the groundbreaking research from Xerox PARC innovation center during the 1970s and 80s where they created what is now know as the graphic interface. Her point being that you can innovate faster by understanding the previous work of others.

For more information on Amber Case’s work, visit

Navigating Low-Fidelity and High-Fidelity Prototyping
Next, we heard from Eric Nyaribo, a design engineer at 3M automotive. He discussed strategies for prototyping and how engineers can use different types of prototyping to convey ideas and encourage interaction between team members.

He shared the concept of low-fidelity and high-fidelity prototyping and when one is more appropriate than the other.

A low-fidelity prototype is a rough concept or first iteration of an idea, it doesn’t have to be functional or pretty. Often a low-fidelity prototype is hacked together with spare parts.The main purpose of a low-fidelity prototype is to kick-off the product development process and inspire team members to share their ideas.

He defined a high-fidelity prototype as a product that is finalized with colors, design and is functional. As he said, “It’s that prototype you show to a customer and they want to keep it for themselves.”

One of Eric’s most valuable pieces of advice was that just because a prototype is closer to the final product doesn’t mean it’s the best kind of prototype for that point in the development cycle.

The value of a prototype isn’t in the model, it’s in the interactions, conversations and feedback they inspire. He also shared how prototyping helps reduce design risk since you can validate your design with small successes throughout the product development cycle. This helps gain support from key stakeholders and encourages the product team.

Continue reading

Q&A: StarWitness Offers Favorable Testimony of Rapid Manufacturing

Police and other security professionals frequently interview suspects and witnesses, sessions that require officially dated recordings. StarWitness, a supplier of specialty forensic audio-video products used by law enforcement and others, recently called on Proto Labs for prototyping and low-volume production help for a new product, the Field Interviewer.

Photo Courtesy StarWitness

StarWitness is a division of Signalscape, Inc., which is based in the Research Triangle area of North Carolina. Signalscape and its brands supply engineering services and products used by U.S.-based law enforcement, security, intelligence and defense services to combat crime, fight terrorism and provide for homeland security. Mike D’Aurelio, mechanical designer at Signalscape, recently answered a few questions about his company’s work with Proto Labs.

What is the StarWitness Field Interviewer?
The Field Interviewer is a one-touch interview recorder that fits in your pocket. It provides a watermarked video identifier for authentication of recorded interviews, and can be controlled and monitored via secure Wi-Fi from an Android smart phone or tablet. Continue reading

DipJar Puts New Twist on Cashless Tipping

DipJar, a startup with offices in New York City and Boston, digitizes the all too familiar tip jar found at many coffee shops and restaurants. It allows credit and debit card users to leave a tip with a simple swipe of their card, providing service employees with yet another opportunity to collect that well-deserved gratuity.

DipJar lets coffee shop patrons leave quick and easy tips in a single swipe.

At a business where a DipJar is present, customers simply “dip” or insert their card into the device to leave a tip in an amount set by the establishment. The DipJar, which houses a card reader, circuitry and software to complete the cloud-based transaction, displays the amount tipped and makes a “change clinking” sound to notify employees of the payment. DipJar also is positioning the device as a way for charitable organizations to collect donations.

Continue reading

11 Reasons Why Launching a Crowdfunding Campaign is Valuable

By Joel Townsan, creator of the Flipout Screwdriver

When my crowdfunding campaign failed, I was pretty devastated. I couldn’t figure out what went wrong — my Flipout Screwdriver had just won the Proto Labs Cool Idea! Award, had gotten tons of press coverage and people really liked the video (not to mention the product). Yet, I fell short, raising only $17,000 of the $50,000 goal I needed to move forward. I’ll admit, the product was priced a little high ($130 compared to most electric screwdrivers that go for $30 to $50 in stores), but I still couldn’t understand what went wrong. I had spent six weeks emailing every gadget magazine, tech blog and DIY forum I could find, but was somehow unable get my project into the coveted “Popular Products” category on Kickstarter — a section on the site that can seemingly make or break a product overnight. I thought it signaled the end of Flipout. Fortunately, it was just the beginning.

The Flipout cordless driver has a 360-degree range of motion with 380 possible configurations.

In addition to simply raising capital, there are a lot of bonuses to running a crowdfunding project that can actually benefit an inventor more in the long run. When the Kickstarter clock expired, I thought my project had failed, but really, it was the beginning of a crazy roller coaster ride that would result in a DRTV deal with Lowe’s — one of the largest big box retailers in the world. Regardless of the success or failure of a Kickstarter project, there’s a lot of good that can come from the campaign. It’s kind of like running a marathon; it takes months of training and then you run like you’ve never run before, but once you cross that finish line, it can be life-changing. Thus, my excitement crowdfunding.

Here are 11 reasons why every inventor and entrepreneur should consider a crowdfunding campaign:

Continue reading