THE SHORT LIST: See You at Trade Shows This Fall

Look for the Proto Labs booth at various trade shows this fall. Here’s a brief roundup of where you’ll find us:


IMTS-Chicago-Sept. 12-17

The International Manufacturing Technology Show at Chicago’s McCormick Place is the largest manufacturing show in the Americas and will feature more than 2,000 exhibiting companies and over 114,000 registrants. Visit us at booth N-72 throughout the week. Proto Labs staffers are also presenting at the conference:

  • Jonathan Bissmeyer, Senior Quality Engineer: “Designing for the DMLS Process,” 1:15 p.m., Monday, Sept. 12, Room W192-B.
  • Greg Thompson, Global Product Manager: “Designing for Direct Metal Laser Sintering and Selective Laser Sintering,” 3:30 p.m., at the Additive Manufacturing Conference (co-located with IMTS).

    At a recent trade show in New York, Proto Labs staffers found time for a photo. From left, Eric Utley, Jenna Nyman, Abby Christensen, Kory Dirnberger, and Charlie Johnson.

MD&M-Minneapolis-Sept. 21-22

Medical Design & Manufacturing at Minneapolis’ Convention Center is the region’s largest medical technology event, with 5,000 industry professionals expected to attend. See us at booth 525.

As part of the show’s programming, Rich Baker, Proto Labs’ Chief Technology Officer, will present, “More Than Prototyping: Digital Manufacturing’s Role in Industry 4.0,” at 3:15 p.m. Wednesday, Sept. 21. Baker also will participate in a panel discussion on “3D Printing: The Brave New World of Manufacturing” at 11 a.m., Thursday, Sept. 22.

Device Talks-Boston-Sept. 28

Now in its fifth year, this gathering of medical technology professionals will include a day of workshops, panel discussions, and networking at the Boston Marriott Long Wharf.

Continue reading

CASE STUDY: Brain-Machine Robotics System May Help Paraplegics Walk Again

Proto Labs is helping researchers at the University of Houston move a science fiction concept to a real-world application that may help paraplegics walk again.

A University of Houston research lab is developing a powered exoskeleton that will be part of a futuristic brain-machine robotics system. Proto Labs is helping by providing custom-machined aluminum-joint housings.

Photo Courtesy: University of Houston

A multidisciplinary research team that includes engineers, neuroscientists, health professionals, and students is working to create, from scratch, a powered wearable robotic device that allows those with lower-limb paralysis from spinal injury, disease, or stroke to regain mobility without a walker or canes.

A sci-fi element lives on in the project, which is taking place at the university’s Laboratory for Noninvasive Brain-Machine Interface Systems. As the lab’s futuristic name suggests, the ultimate goal is to allow users to control the exoskeleton—commanding it to go forward or backward, to turn, sit, or stand—using their thoughts instead of a joystick, switches, or external operator typical of other devices.


Proto Labs Garners Top Workplace Honor for 6th Straight Year

For the sixth consecutive year, Proto Labs has been recognized as a Top Workplace by Workplace Dynamics, a national survey firm that researches participating companies through confidential employee surveys.

The firm looks at individual factors such as employee wages and management, but also aspects that include career potential and a company’s future. The survey is conducted in 50 U.S. markets and local results are compiled by Minneapolis’ Star Tribune.

Welcome to the “Code Cave,” a new collaboration area inside renovated office space at Proto Labs’ Maple Plain, Minn. headquarters.

Our company is one of 110 Minnesota-based employers that scored high enough to qualify as a Top Workplace against Workplace Dynamics’ national benchmark.

On a related note, providing employees with a work environment that supports productivity and nurtures innovation is a key aspect of being a top workplace. Along these lines, the vacated production area on the lower floor of Proto Labs’ headquarters building in Maple Plain was recently renovated and converted into office space. That office area is now home to software engineers, web developers, and other technology-based roles. High-tech conference centers are sprinkled throughout and there’s even a “Code Cave” (see photo). Additionally, we’ve opened a new, larger 3D-printing facility in Cary, N.C.

Though the Workplace Dynamics survey covered only Minnesota employees, Proto Labs globally now includes 1,600 employees in 12 locations in eight countries.

DESIGN TIP: Cutting Corners on Injection-Molded Parts

Sharp corners definitely have their place in part design, but they often spell trouble when injection molding plastic parts. Accordingly, designers should be aware of the pitfalls associated with “being square” when developing parts. Indeed, part accuracy, strength, and aesthetics suffer without the right amount of corner rounding and filleting.

This month’s design tip explores ways to strengthen injection-molded parts while reducing costs with proper placement of corner radii and fillet. You’ll learn about:

  • Material selection. Some plastics are more forgiving of sharp-cornered parts. Choosing the right one for your application is a necessary step towards accurate, functional parts.
  • Wall thickness. Beefing up adjacent walls may absorb some of the stress associated with sharp internal corners, but can create other design challenges.
  • Part geometry. Some parts are simply more “moldable” than others. Achieving proper form, fit and function depends on sound part design, a large piece of which is appropriate corner radii.


NEW JOURNAL: How Technology is Transforming Injection Molding

The new issue of Proto Labs Journal is out and includes a cover story focusing on the digital transformation of injection molding. A related, second feature story explores the pros and cons of printed plastic molds.

The cover story reports on how automating the front-end of the manufacturing process has reinvented injection molding, and served as a game-changer for the entire industry.

The related feature, “3D-Printed Molds,” advises product designers, engineers and developers to take a careful look at part finish, size, design capabilities, mold longevity considerations and cost when comparing printed plastic molds to aluminum tooling.

Elsewhere in the Journal, look for our Eye on Innovation feature, which highlights cool new products and technology you should know about.

Read the entire Journal here.

We’re always on the hunt for though-provoking content, so send your cool project or article idea to our editor at

Thanks and enjoy the issue!