How to Select the Right 3D Printing Technology

The term 3D printing encompasses several manufacturing technologies that build parts layer-by-layer. Each vary in the way they form plastic and metal parts and can differ in material selection, surface finish, durability, and manufacturing speed and cost.

Selecting the right 3D printing technology for your application requires an understanding of each process’ strengths and weaknesses and mapping those attributes to your product development needs. Let’s first discuss how 3D printing fits within the product development cycle and then take a look at common 3D printing technologies and the advantages of each.

Metal 3D-printed parts can enable design features not possible with traditional manufacturing processes.

3D Printing for Prototyping and Beyond
It’s safe to say 3D printing is most often used for prototyping. Its ability to quickly manufacture a single part enables product developers to validate and share ideas in a cost-effective manner. Determining the purpose of your prototype will inform which 3D printing technology will be the most beneficial. Additive manufacturing can be suitable for a range of prototypes that span from simple physical models to parts used for functional testing.

Despite 3D printing being nearly synonymous with rapid prototyping, there are scenarios when it’s a viable production process. Typically these applications involve low-volumes and complex geometries. Often, components for aerospace and medical applications are ideal candidates for production 3D printing as they frequently match the criteria previously described. Continue reading

THE ENGINEERIST: Fail Fast, Succeed Faster

Editor’s Note: The Engineerist is a three-part blog series written by Michael Corr, founder of Los Angeles-based manufacturing consulting firm, DuroLabs. This is part two.

Certification testing is expensive, especially when your product fails.

I was managing an engineering team several years ago when we submitted a new product with an injection-molded enclosure to UL for certification testing. The tests included a mechanical stress test with some rather extreme impact forces. This product was a deviation to a predecessor and therefore had legacy requirements which constrained our design options. With the time pressure we had to get the product to market, the mechanical engineering team and I were hoping a few modest changes to the existing legacy injection mold would be sufficient to pass the new certification testing and go into production. They weren’t.

Logo Image: PR Newswire

Prototype Prep Before UL Testing
After a humbling blow to our egos and sizeable invoices from both the molder and UL, we took another approach. The ME team reviewed the points of failure of the plastic enclosure and came up with a few design improvements. But we didn’t want to risk failure again, and UL required testing parts fabricated from the actual production mold. It would be too expensive and risky if we were to modify the tool and fail again. Continue reading

Webinar: Designing for Selective Laser Sintering

This is the final part in our series of “Designing for 3D Printing” webinars. Just as we’ve looked at stereolithography and direct metal laser sintering in previous webinar, this presentation will provide insights into how to design for selective laser sintering (SLS), a discussion on material options, and recommended applications for SLS.

Post build

The presentation will include the following:

  • Comparison of SLS materials
  • Design guidelines for functional prototypes and production parts
  • Moldability considerations for effective development
  • Open Q&A session

TITLE: Designing for 3D Printing: Selective Laser Sintering
PRESENTER: Eric Van Roekel, SLS production manager
DATE: Thursday, October 27 at 1 p.m. CDT
REGISTER: Click here to sign up  

Can’t make it that day? You can still register and we’ll send you an on-demand version to watch when convenient. Also, feel free to forward this invite to your colleagues.

WEBINAR: Designing for Direct Metal Laser Sintering

In our next webinar, we’re focusing on direct metal laser sintering—our industrial 3D printing process for metal parts. Join David Bentley, our DMLS expert, to learn why product designers are turning to DMLS for prototyping and end-use parts. The presentation will include:

  • An overview of DMLS including materials and design guidelines
  • A case study on an innovative bike design
  • An open Q&A session 

TITLE: Designing for 3D Printing: Direct Metal Laser Sintering
DATE: Thursday, August 25 at 1 p.m. CDT
REGISTER: Click here to sign up

Busy that day and can’t make it? Not a problem. You can still register and we’ll send a recording that can be watched on-demand. Also, feel free to forward this invite to your colleagues.

 

On-Demand Webinar: How Rapid Prototyping Accelerates Medical Device Development

The latest webinar in our continuing series of rapid manufacturing presentations focuses on rethinking the traditional medical device development cycle. With new prototyping tools available, product designers are accelerating development since they can iterate and test new designs more effectively.

Key Takeaways

  • Strategies to accelerate medical device development cycle
  • Prototyping effectively with rapid manufacturing
  • Reducing risk with design analysis

The webinar can be viewed on-demand here.

Continue reading