TIPS WITH TONY: Can 3D-Printed Parts Take the Heat?

Here’s a question that’s often asked: How do materials used in 3D printing compare to injection-molded thermoplastics when the temperature rises? To answer that, I’ll briefly dissect the materials used in stereolithography (SL) and selective laser sintering (SLS) processes as these are commonly compared to injection molding.

Stereolithography
SL involves a thermoset resin that is solidified by an ultraviolet laser, followed by a UV post-curing process to completely solidify the resin. As far as material properties, the big takeaway is that SL parts are built from thermoplastic-like resins, so they do break down over time in direct UV light.

SL uses materials that mimic ABS, polypropylene and glass-filled polycarbonate, and they offer an array of material properties still exist. But today we’re concerned with the thermal properties of the materials that are best suited to handle the heat — 3D Systems Acura 5530 and DSM Somos NanoTool. Both are offered in post-cured states and there’s an additional process for thermal post-curing that increases the operating temperatures.

The chart shows optimal heat deflections for SL materials. The other materials offered in SL have a much lower heat deflection ranging from 120˚F to 177˚F.

Material

UV Post-Cure

UV Post-Cure +
Thermal Post-Cure

3D Systems
Accura 5530

85˚C (185˚F)

250˚C (482˚F)

DSM Somos NanoTool

225˚C (437˚F)

263˚C (506˚F)

Continue reading