WEBINAR: How to Choose the Right Thermoplastic with PolyOne

With thousands of thermoplastics on the market, selecting the right material for a run of injection-molded parts can be intimidating. To help make the process more manageable, we’re teaming up with the plastics industry leader, PolyOne, to host a webinar with tips on choosing the right thermoplastic material for your application.

TITLE: Thermoplastics: How to choose the right material for your application
PRESENTER: Jeremy Bland, Technical Dev. Engineer, PolyOne
DATE: Thursday, September 22 at 1 p.m. CDT
REGISTER: Click here to sign up

The presentation will include the following:

  • Factors in thermoplastic material selection
  • Overview of common thermoplastics including the effects of additives
  • An open Q&A session

Busy that day and can’t make it? Not a problem. You can still register and we’ll send a link to a recording that can be watched on-demand. As usual, feel free to forward to a colleague know if you think he or she will be interested in attending.

TIPS WITH TONY: Flame-Retardant Thermoplastics and UL Classifications

UL 94 is a plastics flammability standard released by the Underwriters Laboratories (USA). The standard classifies plastics according to how they burn in various orientations and part thicknesses from the lowest flame-retardant to most flame-retardant in six different classifications.

UL 94 Rating

Definition of Rating

HB

                                          Slow burning on a horizontal part.

V-2

                                          Burning stops within 30 seconds on a vertical                                             part allowing for drops of flammable plastic.

V-1

                                          Burning stops within 30 seconds on a vertical                                             part allowing for drops of plastic that are not                                               inflames.

V-0

                                          Burning stops within 10 seconds on a vertical                                             part allowing for drops of plastic that are not                                               inflames.

5VB

                                          Burning stops within 60 seconds on a vertical                                             part with no drops of plastic allowed but may                                               burn through the part.

5VA

                                          Burning stops within 60 seconds on a vertical                                             part with no drops of plastic allowed and                                                     cannot burn through the part.

Continue reading

On-Demand Webinar: Choosing the Right Rapid Manufacturing Method

We recently hosted a 30-minute webinar on: Choosing the Right Rapid Manufacturing Method for Plastic Parts. If you missed it, no worries. You can still watch it on-demand HERE.

What did you miss?
We discussed the benefits of rapid manufacturing for plastic components and how to select the correct manufacturing process:

  • 3D printing, machining and molding processes and specifications
  • Material selection and properties for each process
  • Advanced molding materials like thermally conductive plastic and liquid silicone rubber

Top 3 Questions Asked
How long will you keep a mold and do you inform the customer if you’re going to get rid of it?
We’ll store the mold for one year from the last order unless it is requested to keep in storage, and we’ll notify the customer of inactivity to if they would like the mold disposed of or retained in storage.

Is there any limit on volume for injection-molded parts?
No, you can get injection-molded parts in quantities of 25 to 10,000+ with several molds even surpassing 100,000 parts. We have the ability for single and multi-cavity molds dependent on size and complexity.

Can Proto Labs be used for light pipe assemblies in PC, PMMA and silicone?
Yes, we have molded countless parts in those materials for light pipe assemblies. Mold finish should be polished to a SPI-A2 with special attention made to the mold build for ejector pin location, gate location and parting lines.

Stay Tuned
Look for additional technical webinars throughout the year on various 3D printing, CNC machining or injection molding topics. The next webinar will discus how to navigate through Proto Labs’ design for manufacturability (DFM) feedback.

THE SHORT LIST: 5 Med-Friendly Materials

Developing medical devices or health care components? Here’s five good material options to consider.

PEEK, PEI (Ultem) and PPSU (Radel). Attributes: High temperature resistance, creep resistance and works well for applications that require sterilization.

Polycarbonates (Makrolon and LEXAN HP1). Attributes: Good clarity with clear and translucent applications, good impact resistant, and durability.

Medical-grade LSR.

Medical-grade liquid silicone rubber (QP1-250). Attributes: Thermal, electrical and chemical resistance, biocompatibility, and is suitable for skin contact.

Titanium (Ti 6-4). Attributes: Lightweight, temperature and corrosion resistant 3D printed metal used with direct metal laser sintering (DMLS) process to produce fully functional medical components.

WaterShed XC 11122.

WaterShed XC 11122. Attributes: ABS-like material used to 3D print clear microfluidic parts with sterolithography (SL) process. Resistance to water and humidity, and good for lens and flow-visualization models.

For more information on materials, check out our complete selection at protolabs.com, and to learn more about using rapid manufacturing to develop health care and medical products, read our white paper: Prototyping and Low-Volume Production for Medical Applications.

TIPS WITH TONY: Replace Metal with Plastic to Save Weight, Cost

To decrease weight and potentially cost, you can replace metal with plastic on certain parts through 3D printing and injection molding. At Proto Labs, we use industrial 3D printing process stereolithography (SL) to produce thermoplastic-like parts that have a nickel coating on the surface. This offers the increased strength of aluminum die-cast components, without the weight. With injection molding, the introduction of thermally conductive plastics has broken new ground when looking for heat dissipation of expensive heat sinks.

Stereolithography parts built with SLArmor have a metal coating applied over a thermoplastic-like base.

SLArmor involves a ceramic-filled DSM Somos material, which has a metal coating applied to achieve the look, feel and, most importantly, comparable strength of aluminum without added weight. SL is a cost-effective prototyping method for initial parts that mimic metal before moving to higher volumes of die-casted parts.

The material properties of SLArmor are greatly improved in regards to heat deflection, tensile strength, elongation at break and elasticity. The chart below shows exactly how the material relates to die-cast aluminum in three different thicknesses that can be applied based on geometry of SL parts. Note that the thickness of the nickel plating may vary on each part due to the ability to apply the coatings.

Continue reading