White Papers
Read in-depth white papers on rapid manufacturing processes, part design, material properties, and other important considerations.
Manufacturing Technology

Industrial 3D Printing Technologies
Our 3D printing white paper examines the various additive manufacturing technologies—SL, SLS, DMLS, FDM, PolyJet, and others—being used by today’s product designers and engineers to build prototypes and even functional, end-use parts.

Each rapid manufacturing process comes with its own advantages and disadvantages during prototyping. From 3D printing to CNC machining to injection molding, our white paper is a technical look at different manufacturing processes. It lets you weigh the benefits of each, so you can focus on a process best suited for your project.

Overmolding and Insert Molding
Overmolding and insert molding are regularly used to manufacture multi-material components for applications in industries such as medical and health care, automotive, and electronics. But it’s only recently that it also became a viable and cost-effective prototyping method. This white paper offers a primer on overmolding and insert molding and how they can be used both for prototyping during development and on-demand production.

Data, Digital Threads, and Industry 4.0
Just like how the steam engine led an industrial revolution centuries ago, software and data are changing the way we manufacture today. In this white paper, learn how industry-leading companies are accelerating the product development cycle through the use of new technologies and data analytics.

Strategic management of your manufacturing supply chain is critical during product development and life cycle planning. This white paper illustrates how on-demand manufacturing can be used to reduce financial risk and accelerate speed to market through the implementation of supply chain safeguards.
Part Design

Designing for Moldability: Fundamental Elements
Whether you’re new to the injection-molding process or a veteran of manufacturing, our comprehensive Designing for Moldability white paper is a quick reference guide to wall thicknesses, surface finishes, tolerances, materials, and other thermoplastic molding insights. It’s a thorough look at injection molding that might just provide a few tips to help you make better parts.

Designing for Moldability: Complex Features
In our second volume on designing parts for moldability, we dig deeper into some of the more complicated design challenges that product designers and engineers face. If your part has complex features that require undercuts and through-holes, see how the use of side-actions, sliding shutoffs, and pickouts can be used mold those features.

There are a lot of factors that can affect the cosmetic appearance of injection-molded plastic parts. Our white paper on cosmetics addresses the importance of part geometry, material selection, and mold design in minimizing or eliminating cosmetic flaws like sink, knit lines, flash, burn, and other issues that can arise during molding. Knowing the solutions to cosmetic issues early can improve the final appearance of your injection-molded parts.
Material Consideration

This industrial 3D printing white paper explores the properties of thermoplastic and metal materials available with stereolithography, selective laser sintering, and direct metal laser sintering technologies. It also includes a quick-reference guide of material attributes that can steer you toward the proper grade.

There are more than 85,000 commercial options for plastic materials listed in materials databases. Needless to say, narrowing down that extensive list of materials can sometimes seem like a formidable task. Our white paper provides a technical observation of thermoplastic resins and their properties for engineers who want to quantitatively analyze a part; determine loads, stresses, strains, and environments; and make material decisions based on the analysis.

Our white paper on liquid silicone rubber (LSR) discusses the injection-molding process of the elastic material and offers guidelines to improve molded LSR parts. While there are some shared similarities to thermoplastic injection molding, LSR is a thermoset material with a unique set of design characteristics.

Learn about the material properties of metals as well as the 3D printing, machining, and molding processes used to manufacture them. We discuss which metals bring added strength, reduced weight, improved durability, and other benefits to help determine the right path to metal prototypes and low-volume production parts.
Industry Insights

Automotive: Reducing Component Weight
Government restrictions like CAFE standards are driving automakers to develop increasingly fuel-efficient vehicles. One way to do that is through reducing the weight of components in cars and trucks. This white paper looks at lighter materials, like magnesium and aluminum, as well as plastic alternatives that can lessen the load. We also discuss different design considerations to help reduce part weight and the rapid manufacturing processes to get there fast.

Medical and Health Care: Accelerating Speed to Market
Speed to market is everything when it comes to development of medical components and devices. This white paper examines various rapid manufacturing options available to today’s medical design engineers and product developers. From 3D printing to injection molding, explore the strengths and weaknesses of each process as well as material options best suited for your particular application.